Imaginary Bicyclic Biquadratic Fields With Cyclic 2-Class Group

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quadratic Fields with Cyclic 2-class Groups

For any integer k ≥ 1, we show that there are infinitely many complex quadratic fields whose 2-class groups are cyclic of order 2. The proof combines the circle method with an algebraic criterion for a complex quadratic ideal class to be a square. In memory of David Hayes.

متن کامل

On Imaginary Quadratic Number Fields with 2-class Group of Rank 4 and Infinite 2-class Field Tower

Let k be an imaginary quadratic number field with Ck,2, the 2-Sylow subgroup of its ideal class group Ck, of rank 4. We show that k has infinite 2-class field tower for particular families of fields k, according to the 4-rank of Ck, the Kronecker symbols of the primes dividing the discriminant ∆k of k, and the number of negative prime discriminants dividing ∆k. In particular we show that if the...

متن کامل

The Nonquadratic Imaginary Cyclic Fields of 2-power Degrees with Class Numbers Equal to Their Genus Class Numbers

It is known that there are only finitely many imaginary abelian number fields with class numbers equal to their genus class numbers. Here, we determine all the imaginary cyclic fields of 2-power degrees with class numbers equal to their genus class numbers.

متن کامل

Computation of Relative Class Numbers of Imaginary Cyclic Fields of 2-power Degrees

In this abridged version of [Lou], we outline an efficient technique for computing relative class numbers of imaginary Abelian fields. It enables us to compute relative class numbers of imaginary cyclic fields of degrees 32 and conductors greater than 10, or of degrees 4 and conductors greater than 10. Our major innovation is a technique for computing numerically root numbers appearing in some ...

متن کامل

On 2-class field towers of imaginary quadratic number fields

For a number field k, let k1 denote its Hilbert 2-class field, and put k2 = (k1)1. We will determine all imaginary quadratic number fields k such that G = Gal(k2/k) is abelian or metacyclic, and we will give G in terms of generators and relations.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Number Theory

سال: 1995

ISSN: 0022-314X

DOI: 10.1006/jnth.1995.1079